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Abstract: We study how to search for photon-photon scattering in vacuum at present

petawatt laser facilities such as HERCULES, and test Quantum Electrodynamics and non-

standard models like Born-Infeld theory or scenarios involving minicharged particles or

axion-like bosons. First, we compute the phase shift that is produced when an ultra-intense

laser beam crosses a low power beam, in the case of arbitrary polarisations. This result

is then used in order to design a complete test of all the parameters appearing in the low

energy effective photonic Lagrangian. In fact, we propose a set of experiments that can be

performed at HERCULES, eventually allowing either to detect photon-photon scattering as

due to new physics, or to set new limits on the relevant parameters, improving by several

orders of magnitude the current constraints obtained recently by PVLAS collaboration.

We also describe a multi-cross optical mechanism that can further enhance the sensitivity,

enabling HERCULES to detect photon-photon scattering even at a rate as small as that

predicted by QED. Finally, we discuss how these results can be improved at future exawatt

facilities such as ELI, thus providing a new class of precision tests of the Standard Model

and beyond.
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1 Introduction

Photon-Photon Scattering (PPS) in vacuum is a still unconfirmed prediction of both Quan-

tum Electrodynamics (QED) [1] and non-standard models such as Born Infeld theory [2, 3].

Additional contributions to the process can also appear in new physics scenarios involving

minicharged [4] or axion-like [5] particles. However, all the experiments that have been

performed by now could only be used to set upper limits on the photon-photon cross sec-

tion σγγ . The best constraints were obtained recently by PVLAS collaboration [6], and are

still seven orders of magnitude above the QED prediction for σγγ . In the last few years,

there has been an increasing interest in studying the possibility to detect PPS at future

facilities, using two possible strategies. On one hand, the cross section for the process will

be maximum at a possible future photon-photon collider [7], based on a free electron laser

producing two beams of photons in the MeV range. A second approach will be to perform

experiments at optical wavelengths, and compensate the smaller cross sections with a very

high density and/or a long path of interaction of the colliding photons [8–11]. Most of

these proposals require the construction of new facilities, that will eventually be available

in the future, such as a free electron laser and/or an exawatt laser. Two exceptions are

refs. [10, 11], that discussed the possibility of performing experiments at present facilities

to improve the PVLAS limit on the photon-photon cross section. However, even in these

cases the predicted sensitivity was found to be sufficient to detect PPS of QED origin only

at future facilities, such as ELI [12] or VIRGO+ [13], respectively.

Here, we will propose a set of experiments that can already be performed at present

petawatt laser facilities, such as HERCULES [14, 15]. First, we perform a new theoretical
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computation to get a quantitative expression for the phase shift that is produced by PPS

when two orthogonally polarised beams cross each other. This result turns out to provide

a test for PPS of QED origin which is significantly more sensitive than our previous pro-

posal [9, 10], in which the two crossing beams had the same polarisation. Moreover, it can

be used in combination with our previous result to provide a full test of all the parameters

appearing in the low energy effective Lagrangian describing the photons in non-standard

models, such as Born Infeld theory and scenarios involving minicharged (MCP) or axion-

like (ALP) particles. In fact, taking into account the precision that can be achieved in

the measurement of optical phase shifts and ellipticities [6, 16, 17], we propose a set of

experiments that will allow either to detect PPS at HERCULES, or to set new limits on

the relevant parameters, improving by several orders of magnitude the current constraints

obtained by the PVLAS collaboration. We then propose a multi-cross optical mechanism

that can further improve the sensitivity of this set of experiments, eventually enabling

HERCULES to detect PPS as predicted by QED. Finally, we discuss how these results can

be improved at future exawatt facilities such as ELI, thus providing a new class of precision

tests of the Standard Model and beyond.

2 The effective Lagrangian for the electromagnetic fields in QED and in

non-standard models

We will consider the case of photon energies well below the threshold for the production of

electron-positron pairs, and assume an effective Lagrangian for the electromagnetic fields

E and B of the form

L = L0 + ξLL2
0 +

7

4
ξTG2, (2.1)

being L0 = ǫ0
2

(

E2 − c2B
2
)

the Lagrangian density of the linear theory, G = ǫ0c(E ·
B) and ǫ0 and c the dielectric constant and the speed of light in vacuum, respectively.

The additional, non-linear terms, that appear multiplying the parameters ξL and ξT in

equation (2.1), are the only two Lorentz-covariant terms that can be formed with the

electromagnetic fields at the lowest order above L0. Therefore, they will appear as the first

correction to the linear evolution both in QED and in non-standard models.

In fact, in QED photons can interact with each other through the interchange of virtual

charged particles running in loop box diagrams [1]. Besides other interesting effects [18],

such an interaction leads to the Euler-Heisenberg effective Lagrangian density [19], that

coincides with equation (2.1) with the identification ξQED
L = ξQED

T ≡ ξ, being

ξ =
8α2

~
3

45m4
ec

5
≃ 6.7× 10−30 m3

J
. (2.2)

On the other hand, in Born-Infeld theory [2], we would obtain the relation ξBI
T =

4ξBI
L /7 [3], in general without a definite prediction for the numerical value.

The presence of a minicharged (or milli-charged) particle (MCP) [4] would provide an

additional contribution analogous to that from the electron-positron box diagram. If the
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new MCP are spin 1/2 fermions, and assuming that their mass mǫ is still larger than the

energy of the photons (the eV scale in optical experiments), we would obtain

∆ξMCP
L = ∆ξMCP

T =

(

ǫme

mǫ

)4

ξ, (2.3)

where ǫ is the ratio of the charge of the particle with respect to the electron charge. The

existing laboratory bounds in this regime is ǫ . 8 × 10−5 [4]. Taking masses above the

eV scale, in order to apply the effective Lagrangian approach, this limits can be read as

∆ξMCP
L . o(106ξ). As we shall see in the next sections, this constraint has been improved

by PVLAS collaboration, and can be further strengthened by the experiments that we

propose in the present paper. Of course, in this case there are already stronger limits,

ǫ . 10−15, from astrophysical and cosmological observations [4]. A larger contribution

might be obtained if the MCP are lighter than the energy scale of the photons (the eV

scale in the present paper). However, this case would deserve a different treatment which

goes beyond the purposes of the present work, since it cannot be described simply by an

effective Lagrangian of the form of equation (2.1).

Similar considerations apply if the new MCP is a spinless boson. Assuming again

that its mass mǫ is still larger than the energy of the photons (the eV scale in optical

experiments), and using the results of ref. [20], we would obtain

∆ξMCP0
L =

7

16

(

ǫme

mǫ

)4

ξ (2.4)

and

∆ξMCP0
T =

1

28

(

ǫme

mǫ

)4

ξ. (2.5)

On the other hand, if the MCP is a spin 1 boson, the contribution to the effective La-

grangian would be larger, as computed using the result of refs. [20]. We obtain

∆ξMCP1
L =

261

16

(

ǫme

mǫ

)4

ξ (2.6)

and

∆ξMCP1
T =

243

28

(

ǫme

mǫ

)4

ξ (2.7)

Let us now discuss the case of an axion-like particle [5]. This can be a Light Pseu-

doscalar Boson or a Light Scalar Boson, depending on the coupling with the photons,

that is described in the Lagrangian density by the terms LP = −
√

~ c gPΦPG and LS =

−
√

~ c gSΦSL0, respectively. We can find the leading contribution to the effective La-

grangian when the photon energy is much smaller than the mΦ scale, that can be cast in

the form of equation (2.1) with an additional contribution given by

∆ξT =
2~3g2

P

7cm2
Φ

(2.8)
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and ∆ξL = 0 in the case of pseudoscalars, or

∆ξL =
~

3g2
S

2cm2
Φ

(2.9)

and ∆ξT = 0 in the case of scalars. On the other hand, for mΦ & 1eV, the Cristal Ball [5]

laboratory limit gP ≤ 4.2 × 10−3GeV−1 gives the contraint gP /(mΦc2) . 4 × 106GeV−2,

which can be converted in the limit ∆ξT . 2.2 × 10−25m3/J . This constraint has been

improved recently by the PVLAS consideration [6], as we shall see in the next section.

Again, the astrophysical limits gP . 2.7 × 10−9GeV−1, valid for mΦ . 1KeV [5], is still

much more stringent than any laboratory bound.

Similar considerations apply for scalar boson, for which the best laboratory constraints

are also those that were recently set by PVLAS, that we will review in the next section.

We also recall that our approximations do not apply for masses smaller than the order

of the energy of the colliding photons. In this case, the computation of ∆ξL is more

complicated, and the production of real axions has also to be taken into account. The

latter can be expected to produce dichroism, just as in the presence of a constant external

magnetic field [6, 21], and combined with the measurement of ellipticity may allow for

a determination of both mΦ and gS,P . However, this case lies beyond the scope of the

present paper, that uses a phenomenological approach that can be applied to any theory

that goes beyond the Standard Model, in the energy regime in which it only implies a

different contribution to equation (2.1), as parametized by artitrary ξL and ξT . Expressing

the electromagnetic fields in terms of the four-component gauge field Aµ = (A0,A) as

B = ∇ ∧A and E = −c∇A0 − ∂A

∂t
, this gives the equations of motion as the variational

derivatives δΓ/δAµ = 0, where Γ ≡
∫

Ld4x is the effective action. Such equations are

similar to the modified nonlinear Maxwell’s equations that have been obtained in ref. [22],

the only difference being the distinction between ξL and ξT .

3 Present constraints

The current limits on PPS in vacuum have been obtained recently by the PVLAS collab-

oration [6] by searching evidence of birefringence of the vacuum in a uniform magnetic

field background [21]. Their negative result was used to set the current constraints on the

parameters appearing in equation (2.1). With our notation, their 95 % C.L. limit reads

|7ξT − 4ξL|
3

< 3.2 × 10−26 m3

J
. (3.1)

Assuming ξL = ξT ≡ ξexp as in QED, their results can be translated in the limit ξexp <

3.2× 10−26m3/J , which is 4.6× 103 times higher than the QED value of equation (2.2) (7

orders of magnitude for the cross section σγγ).

Note however that PVLAS experiment was only sensitive to the combination |7ξT−4ξL|
of the parameters. In particular, this quantity vanishes when ξT = 4

7
ξL, therefore PVLAS

experiment is unable to set any constraint on a pure Born Infeld theory.
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4 Approximate solution for the scattering of orthogonally polarised

beams

In ref. [9], we have studied the scattering of two counter-propagating waves that are po-

larised in the same direction, and we have found that the effect of PPS was to produce a

phase shift in each wave, which was proportional to ξL multiplied by the intensity of the

other wave. That result was obtained by an analytical, variational approximation, and was

shown to agree with a numerical solution of the full non-linear equations, that was also

obtained in the second of refs. [9].

Here, we will apply a similar variational method to find a solution for the problem of the

scattering of two orthogonally polarised counter-propagating waves, one of which represents

an ultra-high power beam. Let the low power and the high power waves be polarised in

the x and y directions respectively, so that their linear (free) evolution (neglecting photon-

photon scattering) would beAx(t, z)
lin = α0 cos(kz−ωt) andAy(t, z)

lin = A cos(kz+ωt+ϕ),

where ω = kc and we allow for an initial phase difference ϕ. Their energy density, when

each of the two waves is taken alone, would be ρx = ǫ0ω
2α0

2/2 and ρy ≡ ρ = ǫ0ω
2A2/2,

respectively. Hereafter, we will assume that ρy ≫ ρx. When these two waves are made

to scatter, they will affect each other due to PPS, as described by the non-linear terms in

equation (2.1). First, we note that the assumption of no dependence on x and y of the

fields guarantees that the condition At = Az = 0 is maintained by the non-linear evolution,

since we have checked that in this case the equations δΓ/δAt = 0 and δΓ/δAz = 0 are

automatically satisfied, independently on the values of Ax(t, z) and Ay(t, z). Therefore, in

the absence of x and y dependence, the components At and Az with will not be generated

if they are not present from the beginning. Second, we note that the non-linear effect is

driven by the very small parameters ξL and ξT . This justifies a perturbatively-motivated

variational approach, similar to that introduced in refs. [9]. We then need to chose a good

ansatz for the fields Ax(t, z) and Ay(t, z). In principle, each of the two components can get

a transmitted wave contribution, propagating along the same direction as the original wave,

and a reflected wave propagating in the opposite direction. In a perturbative approach, we

can compute these different effects separately and then sum them up. Therefore, we will

first neglect the reflected waves, and use the following ansatz:

Ax = α(z) cos(kz − ωt) + β(z) sin(kz − ωt), (4.1)

Ay = A cos(kz + ωt+ ϕ).

Here, we have neglected the effect of the low power wave on the high power wave, taking

into account that such an effect is expected to be proportional to the energy density of the

low power beam. This expectation, inspired by our previous work [9], will be confirmed by

the result that we will obtain below.

We now substitute the ansatz (4.1) in the Lagrangian (2.1), and average out the fast

variation in z over distances of the order 2π/k, assuming that the envelop functions α(z)

and β(z) will show a much slower variation, as we will verify a posteriori. We then compute

the variational equations δΓ/δα = 0 and δΓ/δβ = 0, keeping the lowest order terms in the

expansion parameter ξT and neglecting the higher order space derivatives (d/dz)n of α(z)
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and β(z), as compared with kn. After a long but straightforward algebra, we find the

following equations:

β′(z) + χT α(z) = 0, (4.2)

α′(z)− χT β(z) = 0,

where χT ≡ 7ǫ0c
2A2k3ξT /2. Assuming the initial condition α(0) = α0, β(0) = 0, in such a

way that the corrected solution coincides initially with that of the linear problem, we find

then α(z) = α0 cos(χT z), β(z) = −α0 sin(χT z). After substituting in equation (4.1), we

finally get the following variational solution:

Ax = α0 cos(kz + χT z − ωt), (4.3)

Ay = A cos(kz + ωt+ ϕ).

In other words, taking into account that ǫ0A2ω2/2 ≃ ρ is the energy density of the

high power wave, we find that after a crossing distance ∆z, the phase of the orthogonal,

low power wave is shifted by an amount ∆φT = χT∆z = 7ξT ρk∆z. Note that this result

is independent of the initial phase difference ϕ between the two crossing waves.

Let us now introduce the possibility that a reflected wave is generated in the component

Ax, as described by the ansatz

Ax = α0 cos(kz + χT z − ωt) + γ(z) cos(kz + ωt) + δ(z) sin(kz + ωt), (4.4)

Ay = A cos(kz + ωt+ ϕ)

After repeating the same procedure as above, we get the following variational solution

γ(z) =
α0kz

4π
[cos(14πρξT )− 1] , (4.5)

δ(z) =
α0kz

4π
sin(14πρξT ).

Now, the quantity 14πρξT can be estimated for the petawatt laser HERCULES [15] that

we will consider below for our proposals of experiments. In this case, the peak intensity is

I ∼ 2× 1022Wcm−2 [15], corresponding to an energy density ρ ∼ 6.7× 1017Jm−2. Taking

into account the PVLAS limit ξexp < 3× 10−26m3/J , and assuming that it can be applied

to ξT at least roughly (see also figure 2 in the last section), we find that ξT ρ . 2 × 10−8

for the product giving the importance of the nonlinear QED effects. As a result, the

variational solution for γ and δ implies that γ(z) ≃ 0 for all the practical purposes, and

δ(z) ≃ 7α0ρξTkz/2. Taking k ∼ 7.8×106m−1 as for the wavelengths of e.g. the HERCULES

laser (λ = 800nm), we obtain that the |δ(z)/α0| . 0.5z/1m. Now even in the multi-cross

configuration that will be discussed below the crossing length will be smaller than the

centimetre scale, so that δ(z) will be smaller than the low power amplitude α0 at least by

two orders of magnitude. For this reason, it will be neglected.

Finally, let us introduce the possible reflected wave in the component Ay, as described

by the ansatz

Ax = α0 cos(kz + χT z − ωt), (4.6)

Ay = A cos(kz + ωt+ ϕ) + η(z) cos(kz − ωt) + σ(z) sin(kz − ωt).
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By repeating the same kind of computations and arguments as above, we find the following

solution

Ax = α0 cos(kz + χT z − ωt), (4.7)

Ay = A cos(kz + ωt+ ϕ) + η0 cos(kz + χLz − ωt)

where χL = 2ǫ0c
2A2k3ξL = 4ξLρk, η(0) = η0 and we assume that σ(0) = 0. We then see

that the counter-propagating wave in the y polarisation only exists if it is present from the

beginning, and that it gets a phase shift ∆φL = χL∆z which is equal to that obtained in

ref. [9], as could be expected.

Equation (4.7) implies that, after crossing a counter-propagating, linearly polarised

ultra-intense laser pulse, an ordinary laser pulse is phase shifted both in the polarisations

parallel and orthogonal to that of the high power beam. The corresponding phase shifts are

∆φL = 4ξLρk∆z = 4ξLIkτ, (4.8)

∆φT = 7ξT ρk∆z = 7ξT Ikτ,

where I = ρc is the intensity of the high power beam and τ = ∆z/c is its time length. If

we assume ξL = ξT as in QED, we see that ∆φT is more sensitive by a factor 7/4 than ∆φL

to the effect of PPS. This is already an improvement with respect to ref. [9]. Moreover,

the dependence of equations (4.8) on both parameters ξL and ξT will permit a full analysis

of the effective Lagrangian (2.1), distinguishing between QED and other models such as

Born Infeld theories. Finally, we note that (4.8) also implies that the high power pulse

behaves like a birefringent medium, producing a relative phase shift ∆φb = ∆φT −∆φL =

(7ξT − 4ξL)Ikτ between the transverse an parallel polarisations of the low power beam.

5 Proposal of experiments

We will now discuss how the result of equations (4.8) can be used to search PPS in vacuum

by measuring phase shifts and ellipticities. In fact, ref. [16, 17] provides a technique

that allows for the measurement of phase shifts as small as 10−8rad, which is the noise

limit [17]. This precision, that holds for ultra-short laser pulses [16, 17], applies then to our

∆φL and ∆φT . A similar sensitivity can be obtained for the measurement of the ellipticity

induced by ∆φb corresponding to birefringence. In particular, in the same experiment that

we have cited above [6], the PVLAS collaboration was able to resolve the corresponding

∆φb with a statistical error σb = 1.1 × 10−8rad, thus allowing them to set a 95% C.L.

experimental limit ∆φb < 2.8 × 10−8rad. Hereafter, to be definite and for simplicity, we

will use this same numerical value, 2.8 × 10−8rad, for the sensitivity in the measurement

of ∆φL and ∆φT , taking into account that the actual experimental precision will be close

to this choice [16, 17].

We can now propose a set of three experiments:

1) A linearly polarised low power laser pulse is divided by a beam splitter in two

branches. One of them propagates freely in vacuum, while the other crosses a contra-

propagating ultra-high power laser pulse polarised in the same direction. The phase
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shift suffered by the low power pulse as a consequence of PPS is then measured by

comparing with the pulse that has propagated freely, using the technique described

in ref. [16, 17]. Due to equation (4.8), this configuration can be used to measure the

parameter ξL = ∆φL

4FIkτ
, where we have introduced a gain factor F that corresponds

to a multi-cross configuration as discussed below. This experiment will then allow

either to detect PPS by measuring a non-vanishing ξL, or to set an upper limit on

this parameter as

ξL <
2.8× 10−8

4FIkτ
. (5.1)

2) The configuration is the same as in case 1), except that now the high power beam

is polarised in a direction orthogonal to that of the low power pulse. Due to equa-

tion (4.8), this setup can be used to obtain the parameter ξT = ∆φT

7FIkτ
by measuring

the phase shift ∆φT . This will allow either to detect PPS or to set the upper limit

ξT <
2.8× 10−8

7FIkτ
. (5.2)

3) The low power beam polarisation has two components, one parallel and another

orthogonal to that of the contra-propagating high power pulse. Ellipticity measure-

ments can then be used to deduce the difference of the phase shifts ∆φT−∆φL = ∆φb,

allowing to determine the combination 7ξT−4ξL

3
= ∆φb

3FIkτ
, thus allowing either to de-

tect PPS, or to set the upper limit

|7ξT − 4ξL|
3

<
2.8 × 10−8

3FIkτ
. (5.3)

The combination of these three experiments will permit a complete exploration of the

parameter space. Actually, it is easy to see that if ξL and ξT have the same sign, as in

QED and Born Infeld theories, experiment 3) is less sensitive than the combination of the

others and can be discarded without losing significant information. On the other hand, if

ξL and ξT have opposite sign, experiment 3) is the most sensitive one, although even in this

case the other two measurements would be useful for a full determination of both ξL and ξT .

From equations (5.1), (5.2) and (5.3), we see that the sensitivity depends on the com-

bination Ikτ of the experimental parameters of the ultra-high power laser beam, and on

a gain factor F that will be discussed later. Therefore, the most favourable experimental

configuration will be that allowing for the maximum value of the product Ikτ . As far as

we know, the highest value achieved at present facilities is that of HERCULES laser [15],

that reaches peak intensities I = 2 × 1022W/cm2, for a time length τ = 3 × 10−14s and

wavelength λ = 2π/k = 8.1 × 10−7m. This gives Ikτ = 4.7 × 1019J/m3. Even in the

absence of any gain factor (F = 1), such a facility will be able to resolve ξL and ξT as small

as 1.5× 10−28m3/J and 8.6× 10−29m3/J , respectively, thus allowing either to detect PPS

of non QED origin, or set limits on the parameters that are more than two orders of mag-

nitude (5 order of magnitude in the cross section) more stringent than the current PVLAS

limits, in addition to the fact that they constrain the full parameter space, including the

case of Born-Infeld theories, that were unconstrained by PVLAS.
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Figure 1. UProposed setup for multiple crossing of the two scattering laser pulses.

A significant improvement will be obtained in the near future at ELI [12], that in its

first stage will achieve peak intensities I ≃ 1025W/cm2, for a time length τ ≃ 10−14s and

wavelength λ = 2π/k ≃ 8× 10−7m. This gives Ikτ ≃ 8× 1021J/m3. Even in the absence

of any gain factor (F = 1), such a facility will be able to resolve ξL and ξT as small as

9 × 10−31m3/J and 5 × 10−31m3/J , respectively. In particular, ELI would allow for the

detection of PPS of QED origin and for measuring the parameter ξ with two figures.

6 Improving the sensitivity with multiple crossing

The sensitivity of our proposed experiments can be enhanced by making the two beams

cross each other several times, using a kind of wave guide consisting of two parallel series

of parabolic mirrors as shown in figure 1. An advantage of using parabolic mirrors is that,

in the paraxial approximation, they do not generate aberrations in the beam. We assume

that the laser pulses are localised at a distance R half a way to the path leading to the

next mirror. To be concrete, we will also assume that at the crossing points the high

power laser is focused to the diameter d ≃ 0.8µm and intensity I ≃ 2× 1022Wcm−2 of the

HERCULES beam. The time duration τ = 30fs implies that the pulse length cτ ≃ 9µm

along the direction of propagation is approximately an order of magnitude greater than

its transversal width, therefore the two beams must cross forming an angle θ close to π

in order to maximize their superposiposition. These requirements may be achieved using

plasma mirrors [23], that can work e.g. at the intensity Imirror ≃ 2 × 1019W/cm2 with a

reflection coefficient r ≃ 0.98 [23]. In this case, the high power beam at the mirror should

have a diameter equal to d
√

I/Imirror ≃ 25µm. In order to avoid diffractive distortions, we

will use parabolic mirrors of, say, a double diameter, dmirror ≃ 50µm. On the other hand,

the two planes are assumed to be at a distance ≃ 2R, with R much larger than dmirror, say

R = 5cm, in such a way that θ−π = 2arccos(dmirror/R)−π ≃ −2×10−3, so that θ is very

close to π. A serious technological challenge to be faced will be the very precise alignment

of the mirrors, since any uncertainty in the direction will be multiplied by the number of

– 9 –



J
H
E
P
1
1
(
2
0
0
9
)
0
4
3

times the beams are reflected. In principle, the orientation of the mirrors can currently be

fixed with a precision as small as ∆θ ∼ 10−8rad [24]. After N reflections, this will produce

an uncertainty ∼ NR∆θ on the position of the spot at the focus. This uncertainty must

be smaller than the diameter of the beams at the focus, so that N . d/(R∆θ) ∼ 103.

In order to compute the gain factor F of this configuration, we note that after each

reflection the intensity is reduced by a factor r ≃ 0.98. Moreover, the phase shift is due

to the counter-propagating components of the photon momenta, pz = ~k sin(θ/2). Taking

into account that k appears to the third power in the expression of the phase shift (or

equivalently that it appears to the sixth power in the cross section [1]), the gain factor is

then F = sin4(θ/2)
∑N+1

n=0 rn, where we have included a further factor sin(θ/2) taking into

account that ∆z becomes cτ sin(θ/2) in this configuration. This result can also be obtained

in more elegant and rigorous way by making the computation in the reference system in

which the total momentum is zero and the two colliding photons are antiparallel. In fact,

by indicating with a prime the quantities in such a system, and being z and y the vertical

and horizontal directions in thelaboratory system of figure 1, we have: t′ = γ(t − βy/c),

y′ = γ(y − βct), z′ = z, ω′ = γ(ω − βcky), and k′y = γ(ky − βω/c) ≡ 0 and k′z = kz,

where β = cky/ω and γ =
√

1− β2. It is then easy to see that the phase k′zz
′ − ω′t′ +

2ǫ0A2(k′z)
3ξL∆z′, when translated to the laboratory system, gives kzz + kyy − ωt + ∆φ,

with ∆φ = sin4(θ/2)∆φθ=π. A similar result can be obtained in the case of orthogonally

polarized waves.

Taking N = 1000 in the expression of F that we have obtained above, we can find a

limiting value Fmax ≃ 50, that in principle can be achieved with present technology. As a

result, the measurement of the phase shifts in the experiments 1) and 2) that we proposed

above with such a gain factor will be able to resolve ξL and ξT as small as 3.0×10−30m3/J

and 1.7 × 10−30m3/J respectively, thus allowing to detect PPS as predicted by QED, or

find a signal of non-standard physics. Note that the combination of the two experiments

will also be able to test Born Infeld theory and scenarios involving MCPs or axion-like

particles, taking into account the discussion of section 2.

7 Conclusions

We have computed the phase shifts affecting a low power laser beam that crosses an high

power laser pulse with general transverse polarisation, and proposed a set of experiments

to completely determine the parameter space of the effective Lagrangian that describes

PPS well below the threshold for the creation of electron-positron pairs.

Our results are summarised in figure 2, showing the 95% C.L. exclusion regions that

can be obtained with this set of experiments at the present facility HERCULES, without

or with multi-crossing, as compared to the current constraint by PVLAS. The predictions

of QED and Born-Infeld theory are explicitly indicated. Additional contributions from

minicharged particles, or axion-like scalar or pseudoscalar bosons, can sum with them and

produce a different point in the ξL and ξT plane, as discussed in section 2.

Even with the single-crossing version (F = 1), figure 2 shows how the PVLAS limits

can be substantially improved at HERCULES, possibly allowing for the detection of PPS of
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Figure 2. Exclusion plot for the search of PPS. The parameters ξL and ξT are measured in units of

m3/J . The diagonal line corresponds to Born Infeld theory, while the point is the QED prediction.

The darkest region is excluded by the current PVLAS constraint. The next two inner regions

correspond to the parts of the parameter space that can be probed at HERCULES with single

crossing (F = 1) or multiple crossing (choosing F = 30), respectively. Finally, the last inner region

represents the range that can be reached at ELI with single crossing.

non-standard origin. On the other hand, by using a multi-cross mechanism, HERCULES

would already be able to detect PPS of QED origin. Note that the result of figure 2

is obtained using the conservative value F = 30, corresponding to just N = 44 aligned

mirrors, which is a more realistic assumption than the maximum value that we have found

above. Finally, in figure 2, we also see how the sensitivity will be improved at ELI in the

future, thus allowing for a more precise determination of the parameters.

We think that this proposal can eventually contribute to a new class of precision

tests of QED and non-standard models, such as Born-Infeld Theory or scenarios involving

minicharged particles or axion-like, scalar or pseudoscalar bosons.
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